Importancia Economica
El debate sobre la biotecnología y su empleo en un determinado sector de la economía debe incorporar una visión analítica retrospectiva en la que se contemple lo que esa tecnología, en la primera acepción, ha supuesto en ese sector o en un determinado campo de aplicación y cuales son los eventuales beneficios o problemas que su aplicación ha supuesto, aproximación analítica que se enriquezca a su vez, con la orientación comparativa que ponga de relieve las ventajas o inconvenientes que surgen con la utilización específica de métodos o técnicas propias de la nueva biotecnología.
Este encauzamiento es indispensable desde el punto de vista técnico para avanzar por el camino del debate racional que tenga en cuenta la evolución social que viene marcada por el tránsito o la síntesis de la sociedad moderna a la sociedad del riesgo que se articula alrededor de los análisis y propuestas de una serie de científicos sociales que encabeza Ulrich Beck y al que han seguido, entre otros, H. Margolis, Scot Lash y Brian Wynne.
Se ha estado incubando el proceso de un conflicto entre estos colectivos a lo largo de las últimas dos décadas que H. Margolis identifica con la controversia acerca de las “sospechosos habituales” y para lo que establece tres niveles o argumentos teóricos.
En el primer nivel, la controversia se sitúan en el plano de la ideología de modo que los conflictos más profundos tienen que ver con el poder y la responsabilidad en lo que concierne a las obligaciones de los humanos para con otros humanos y para con la naturaleza y de este modo incide sobre los fines a los que la política pública se dirige. En el segundo nivel, la controversia se centra en las ideas de los expertos y radica fundamentalmente en la falta de confianza del público en las instituciones que aseguran que los peligros están bajo control. La tercera base teórica descansa en la idea que los expertos visualizan el riesgo de modo diferente a lo que el público ve.
Importancia Ecológica
Esde gran importancia ya que la biotecnología ha influido en los sistemas de producción de metano o etanol, por fermentación anaerobia de biomasa, y en el crecimiento selectivo y propagación de árboles y plantas ornamentales. Las técnicas más utilizadas son las de ADNrec, ingeniería de proteínas y procesos e ingeniería de producción de anticuerpos monoclonales -un área muy limitada de la biotecnología-, que han revolucionado en un corto espacio de tiempo campos como el diagnóstico de enfermedades infecciosas y genéticas, la monitorización de procesos industriales y la producción de variedades de microorganismos capaces de elaborar sustancias farmacológicas o alimenticias y de metabolizar aceites para eliminar contaminaciones.
Importancia Agronomica:
Resistencia a herbicidas.
La resistencia a herbicidas se basa en la transferencia de genes de resistencia a partir de bacterias y algunas especies vegetales, como la petunia. Así se ha conseguido que plantas como la soja sean resistentes al glifosato, a glufosinato en la colza y bromoxinil en algodón.
Así con las variedades de soja, maíz, algodón o canola que las incorporan, el control de malas hierbas se simplifica para el agricultor y mejoran la compatibilidad medioambiental de su actividad, sustituyendo materias activas residuales. Otro aspecto muy importante de estas variedades es que suponen un incentivo para que los agricultores adopten técnicas de agricultura de conservación, donde se sustituyen parcial o totalmente las labores de preparación del suelo. Esta sustitución permite dejar sobre el suelo los rastrojos del cultivo anterior, evitando la erosión, conservando mejor la humedad del suelo y disminuyendo las emisiones de CO2 a la atmósfera. A largo plazo se consigue mejorar la estructura del suelo y aumentar la fertilidad del mismo.
El ejemplo más destacado se ha observado en EEUU y Argentina, donde las autorizaciones de variedades de soja, tolerantes a un herbicida no selectivo y de baja peligrosidad, han tenido una rápida aceptación (14 millones de has en 1999) que ha ido acompañada de un rápido crecimiento de la siembra directa y no laboreo en este cultivo.
Resistencia a plagas y enfermedades.
Gracias a la biotecnología ha sido posible obtener cultivos que se autoprotegen en base a la síntesis de proteínas u otras sustancias que tienen carácter insecticida. Este tipo de protección aporta una serie de ventajas muy importantes para el agricultor, consumidores y medio ambiente:
- Reducción del consumo de insecticidas para el control de plagas.
- Protección duradera y efectiva en las fases críticas del cultivo.
- Ahorro de energía en los procesos de fabricación de insecticidas, así como disminución del empleo de envases difícilmente degradables. En consecuencia, hay estimaciones de que en EEUU gracias a esta tecnología hay un ahorro anual de 1 millón de litros de insecticidas (National Center for Food and Agricultural Policy), que además requerirían un importante consumo de recursos naturales para su fabricación, distribución y aplicación
- Se aumentan las poblaciones de insectos beneficiosos.
- Se respetan las poblaciones de fauna terrestre.
Este tipo de resistencia se basa en la transferencia a plantas de genes codificadores de las proteínas Bt de la bacteria Bacillus thuringiensis, presente en casi todos los suelos del mundo, que confieren resistencia a insectos, en particular contra lepidópteros, coleópteros y dípteros. Hay que señalar que las proteínas Bt no son tóxicas para los otros organismos. La actividad insecticida de esta bacteria se conoce desde hace más de treinta años. La Bt es una exotoxina que produce la destrucción del tracto digestivo de casi todos los insectos ensayados.
Este gen formador de una toxina bacteriana con una intensa actividad contra insectos se ha incorporado a multitud de cultivos. Destacan variedades de algodón resistentes al gusano de la cápsula, variedades de patata resistentes al escarabajo y de maíz resistentes al taladro.
Los genes Bt son sin duda los más importantes pero se han descubierto otros en otras especies, a veces con efectos muy limitados (en judías silvestres a un gorgojo) y otras con un espectro más amplio de acción como los encontrados en el caupí o en la judía contra el gorgojo común de la judía.
Los casos más avanzados de plantas resistentes a enfermedades son los de resistencias a virus en tabaco, patata, tomate, pimiento, calabacín, soja, papaya, alfalfa y albaricoquero. Existen ensayos avanzados en campo para el control del virus del enrollado de la hoja de la patata, mosaicos de la soja, etc.
4.3. Mejora de las propiedades nutritivas y organolépticas.
El conocimiento del metabolismo de las plantas permite mejorar e introducir algunas características diferentes. En tomate, por ejemplo, se ha logrado mejorar la textura y la consistencia impidiendo el proceso de maduración, al incorporar un gen que inhibe la formación de pectinasa, enzima que se activa en el curso del envejecimiento del fruto y que produce una degradación de la pared celular y la pérdida de la consistencia del fruto.
En maíz se trabaja en aumentar el contenido en ácido oleico y en incrementar la producción del almidones específicos. En tabaco y soja, se ha conseguido aumentar el contenido en metionina, aminoácido esencial, mejorando así la calidad nutritiva de las especies. El gen transferido procede de una planta silvestre que es abundante en el Amazonas (Bertollatia excelsia) y que posee un alto contenido en éste y otros aminoácidos.
Resistencia a estrés abióticos.
Las bacterias Pseudomonas syringae y Erwinia herbicola, cuyos hábitat naturales son las plantas, son en gran parte responsables de los daños de las heladas y el frío en muchos vegetales, al facilitar la producción de cristales de hielo con una proteína que actúa como núcleo de cristalización. La separación del gen implicado permite obtener colonias de estas bacterias que, una vez inoculadas en grandes cantidades en la planta, le confieren una mayor resistencia a las bajas temperaturas.
En cualquier caso, la resistencia a condiciones adversas como frío, heladas, salinidad, etc., es muy difícil de conseguir vía biotecnología, ya que la genética de la resistencia suele ser poligenética, interviniendo múltiples factores.
Otras...
- En el campo de la horticultura se han obtenido variedades coloreadas imposibles de obtener por cruzamiento o hibridación, como el el caso de la rosa de color azul a partir de un gen de petunia y que es el responsable de la síntesis de delfinidinas (pigmento responsable del color azul). En clavel también se ha conseguido insertar genes que colorean esta planta de color violeta.
- También se ha conseguido mejorar la fijación de nitrógeno por parte de las bacterias fijadoras que viven en simbiosis con las leguminosas. Otra línea de trabajo es la transferencia a cereales de los genes de nitrificación de dichas bacterias, aunque es enormemente compleja al estar implicados muchísimos genes.
- En colza y tabaco, se ha logrado obtener plantas androestériles gracias a la introducción de un gen quimérico compuesto por dos partes: una que sólo se expresa en el tejido de la antera que rodea los granos de polen y otra que codifica la síntesis de una enzima que destruye el ARN en las células de dicho tejido. Este procedimiento permitirá la obtención de híbridos comerciales con mayor facilidad.
- En la industria auxiliar a la agricultura destaca la producción de plásticos biodegradables procedentes de plantas en las que se les ha introducido genes codificadores del poli-b-hidroxibutirato, una sal derivada del butírico. Cuando estos genes se expresan en plantas se sabe que de cada 100 gr de planta se puede obtener 1 gr. de plástico biodegradable.
- Producción de plantas transgénicas productoras de vacunas, como tétanos, malaria en plantas de banana, lechuga, mango, etc.
Fuentes: